2 - Formale Methoden der Softwareentwicklung [ID:10431]
50 von 1068 angezeigt

주� jewe

kako vse cheese vemo, a si sva.

Mi Cake Treeedo in bokam kaj novič��eker surrounding ko cması,

看一下 mirajpa.

Za spložjepo do ašofthem,

pa šinu vena smo pretty časisniki

pse živolj IPO.

In imamo lam militiranja.

zumindest tra決no se Probably

sketches

nemačke

Ignatelj

s grabov

injustice

ostr

o python

ruktur

s

izda

blid

dva

pri

Av albo bež sharpačолju.

Valno on nascl Creepa Mỹ ter vidim kaj deli,

neka odvojitec.

Ali na v rep litigation talu na Bulk这个

Guidere

Svepračko

sva

Na 800 ms. vidimo se zam idol

cooker na

nekaj poziv su

čas sklad

aco

s sezorom pinec Tech transisiji tisto v šetirih torah,

ali avtokročujem to쳤, caj je osebe l 놓nja,

ali ne tezno systeme modelsko.

Odvaj allowo svoj

osoboza, da se

skup 어no codinga leża k♥

kratimo, kasy p destroying

kar tail gre?!

ta poščina od intailska Challenge s matemat pilnica.

Kdo chores AC die učite?

OK, nebovo peščina ne je dobro ideja.

Kdo je učila togo, ki jo gamo packets recite?

Princi o 1, nekateri da prevet Grill.

Če vid listal, kot sem počel lahko, kot ne veš daže.

Leti se ozaz至ad glasbeni.

Ne, ons dena se po katafor house.

Zugänglich über

Offener Zugang

Dauer

01:21:21 Min

Aufnahmedatum

2016-10-26

Hochgeladen am

2019-04-11 12:39:02

Sprache

en-US

In the first part of the course, we will engage in the formal verification of reactive systems. Students learn the syntax and semantics of the temporal logics LTL, CTL, and CTL* and their application in the specification of e.g. safety and liveness properties of systems. Simple models of systems are designed and verified using model checkers and dedicated frameworks for asynchronous and synchronous reactive systems, and the algorithms working in the background are explained.

The second part of the course focuses on functional correctness of programs; more precisely, we discuss the theory of pre- and postconditions, Hoare triples, loop invariants, and weakest (liberal) preconditions, in order to introduce automatised correctness proofs using the Hoare calculus.

 

Students are going to acquire the following competences:

Wissen
  • Reproduce the definition of syntax and semantics of temporal logics LTL, CTL, and CTL*.
  • Reproduce the definition of semantics of a simple programming languages like IMP, with special focus on axiomatic semantics (Hoare rules).

  • Explain how CTL can be characterised in terms of fixpoints.

Verstehen The students understand the workings of state of the art automatic frameworks, clarifying the role of model checking algorithms, semantics and Hoare calculi in formal verification. Anwenden In a series of exercises, the students use state of the art tools for
  • model checking

  • specification and verification of reactive systems,

  • verification of functional correctness or memory safety of simple programs.

Analysieren
  • Choose the optimal tool for a given verification or specification problem.
  • Differentiate between safety and liveness properties.

Einbetten
Wordpress FAU Plugin
iFrame
Teilen